其实是对一篇英文里的翻译搞不清楚,原文是这样的,Consider a class of nonlinear system with the approximation up to the second order in the state x as given by
x(dot)=Lx+Q(x,x)+gµ (15)
下面大致的意思是:“L是雅可比矩阵,有个零特征值,其他特征值在复平面的左半平面,
µ是系统参数,Q是x的2次项形式,并且假定µ=0是x=0是个平衡点。”然后下面引用了一个鞍结分叉的定理
The equilibrium point x=0 of system (15)will undergo saddle node bifurcation from the origin at µ=0 if lg≠0 and lQ≠0.Here ,l and r denote the left and right eigenvectors corresponding to zero eigenvalues of L,respectively,with lr=1.
谁能把英文的意思跟我解释一下以及上面提到的鞍结分叉定理,尤其最后一句,什么叫 l 和r代表L零特征值的左右特征向量,左右特征向量什么意思啊
<P>呵呵,其实我最终要问的是什么是零特征值的左右单位特征向量,我不是学数学的,没接触过这个概念,按照推荐过来的书上的,就是<FONT face="Times New Roman">L</FONT>r=0,lL=0,‖l‖=‖r‖=1,而我在文章里看到的‖l‖=‖r‖≠1,但满足<FONT face="Times New Roman">L</FONT>r=0,lL=0,lr=1,所以我就感到有些困惑</P>