|
上次的观点不准确,
对于单自由度系统:mx‘’+cx‘+kx=0,这也是通常的二阶系统,固有频率:w=sqrt(k/m), 如果假设c=0,那么mx''+kx=0, 根据数学分析知识通解x=q*exp(-jw), 把x代入c=0时的方程,(w^2-k/m)q=0, 如果要求方程具有非平凡解(q不等于0),那么w^2-k/m=0,同时可以得到模态坐标q;所以对于这种阻尼的二阶系统,其固有频率的求解过程完全可以假设c=0。cx' 这样的阻尼是比例阻尼,即可以用刚度和质量的线性组合表示:c=k*x1+m*x2。
对于多自由度系统,在模态坐标下,比例阻尼可以使系统完全解耦为若干个单自由度系统的叠加。有限元法求解模态频率和振型时,通常假设阻尼等于零,这不影响结果的正确定型。
方程中若有 c*x项,那么c就是结构阻尼,结构阻尼存在时,有限元划分节点得到的多自由度系统就不能解耦为单自由度系统。
[ 本帖最后由 ll_18301 于 2007-5-24 19:49 编辑 ] |
|